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Synthesis of Main-Chain Liquid-Crystalline
Polyesters Containing Diphenyl Mesogens by

Chemo-Enzymatic Route†
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1Departments of Physics and Chemistry, Center for Advanced Materials,
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Main-chain thermotropic liquid-crystalline polyesters containing rigid biphenyl
mesogens and flexible spacers were synthesized by chemo-enzymatic route. The
enzyme-catalyzed polymerization showed high regio- and chemo- selectivity, and is
environmentally friendly. The resulting polyesters were characterized with 1H-NMR,
13C-NMR, gel permeation chromatography (GPC), differential scanning calorimetry
(DSC), and polarized light optical microscopy (POM).
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Introduction

In the last few years, main chain liquid-crystalline polyesters have been attracting

much attention because of both scientific interest and numerous technological appli-

cations (1–6). Thermotropic main-chain liquid-crystalline polyesters are generally

obtained by combining rigid mesogenic segments and flexible spacers in alternating

succession (7). Such polymer melts exhibit mesomorphic phases of nematic or

smectic order.

The first reported observation of thermotropic liquid-crystalline behavior in polymers

was made by Roviello and Sirigu (8) and independently by Kuhfuss and Jackson (9). Since

then, many research works have been focused on the synthesis of liquid-crystalline

polymers. However, most of the synthesis is based on the conventional chemical

reaction, and toxic catalysts and substrate are used in the synthesis of the polymers.

Enzymes are efficient catalyst and their catalytic activity with unnatural substrate in

organic reaction media is attracting considerable attention (10). Enzymatic synthesis

has been proven to have a number of advantages and provide a good example to
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achieve “green polymer chemistry” (11–13). The focus of this work is to exploit advances

in both biotechnology and polymer science in order to synthesize main-chain liquid-crys-

talline polyester with biphenyl mesogen units. To our knowledge, the present communi-

cation is the first report of synthesis of main-chain liquid-crystalline polyesters using an

enzymatic route.

Experimental

Materials

Novozyme-435, an immobilized enzyme, was purchased from Sigma. All other chemicals

and solvents were of analytical grade and used as received unless otherwise noted. 4, 40-

Dihydroxybiphenyl, potassium carbonate, ethyl bromoacetate, 2-butanone, triethylene

glycol, diethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol were purchased

from Alfa Aesar, and polyethylene glycol dimethylether (Mw 1,000) was purchased

from Aldrich.

Characterization

Gel permeation chromatography (GPC) was used to determine the molecular weights and

the molecular weight distribution of the samples.
1H-NMR, 13C-NMR were recorded on a 200 MHz (Bruker ARX-200) spectrometer

using CDCl3 as solvent unless otherwise stated.

The DSC measurements were carried out using a TA Instruments DSC 2910. A scan

rate of 108C . min21 was used. Samples were tested under a nitrogen atmosphere and

sample sizes were between 3–8 mg.

Synthesis of Monomer 1

Diester monomer 1 was prepared by the reaction of 4,40-dihydroxybiphenyl (9.3 g,

50 mmol) with ethyl bromoacetate (25 g, 150 mmol) in 2-butanone (100 ml) under

reflux for 8 h, and potassium carbonate (27.6 g, 200 mmol) was used as catalyst

(Scheme 1). After the reaction, the crude product was recrystallized from 50% (v/v)

ethanol aqueous solution to give white crystals, and the yield was 85%. The final

product was a white crystal with a melting point at 127–1298C. 1H-NMR Data

Scheme 1. Synthesis of diester monomer 1.
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(DMSO): d ¼ 1.24 (m, C-8H), 4.19 (m, C-7H), 4.83 (m, C-5H), 7.03 (m, C-3H), 7.54

(m, C-2H). 13C-NMR Data (DMSO): d ¼ 15.01 (C-8), 61.56 (C-7), 65.66 (C-5), 115.8

(C-3), 128.32 (C-2), 133.77 (C-1), 157.71 (C-4), 169.73 (C-6).

General Polymerization Procedure

In a typical experiment, equimolar amounts of diester monomer 1 and diols monomers

2–6 were taken into a round-bottom flask, 10 wt% of novozyme-435 and 400 wt% of

poly(ethylene glycol) dimethylether (with respect to the weight of monomers) was

added (Scheme 2). Poly(ethylene glycol) dimethylether was used as solvent in the

polymerization. The resulting mixture was kept at 60–708C for 48 h under reduced

pressure. After the reaction, 1,4-dioxane was added and the enzyme was filtered off to

quench the reaction. The polymer solution was poured in a methanol solution to get the

polymer. The polymer was resolubilized in hot 1,4-dioxane and the resulting solution

was precipitated in methanol to recover the polymer. This procedure was repeated

several times to get the pure polymer.

Polyester (7): 1H-NMR Data (CDCl3): d ¼ 1.18 (m, OCH2CH3 end group), 3.54 (m, C-

11H), 3.64 (m, C-10H), 4.29 (m, C-9H), 4.60 (s, C-5H), 6.87 (m, C-3H), 7.35 (m, C-2H).
13C-NMR Data (CDCl3): d ¼ 64.75 (C-9), 65.86 (C-5), 69.44 (C-10), 71.03 (C-11),

115.44 (C-3), 128.3 (C-2), 134.66 (C-1), 157.43 (C-4), 169.34 (C-6). Mn (GPC), 6,700

Da; PD 1.5.

Scheme 2. Biocatalytic synthesis of main-chain liquid crystalline polyesters containing diphenyl

mesogens.
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Polyester (8): 1H-NMR Data (CDCl3): d ¼ 1.16 (m, OCH2CH3 end group), 3.68 (m, C-

10H), 4.31 (m, C-9H), 4.67 (s, C-5H), 7.14 (m, C-3H), 7.51 (m, C-2H). 13C-NMR Data

(CDCl3): d ¼ 64.35 (C-9), 66.13(C-5), 68.84 (C-10), 115.94 (C-3), 129.68 (C-2),

133.66 (C-1), 157.84 (C-4), 168.79 (C-6). Mn (GPC), 5,900 Da; PD 1.7.

Polyester (9): 1H-NMR Data (DIOXANE): d ¼ 1.18 (m, OCH2CH3 end group), 1.56

(m, C-10H), 4.12 (m, C-9H), 4.68 (s, C-5H), 7.18 (m, C-3H), 7.48 (m, C-2H). 13C-

NMR Data (DMSO): d ¼ 25.64 (C-10), 64.14 (C-9), 66.57 (C-5), 115.74 (C-3), 129.98

(C-2), 132.76 (C-1), 157.32 (C-4), 169.10 (C-6). Mn (GPC), 4,200 Da; PD 2.6.

Polyester (10): 1H-NMR Data (DIOXANE): d ¼ 1.17 (m, OCH2CH3 end group), 1.38

(m, C-11H), 1.57 (m, C-10H), 4.18 (m, C-9H), 4.66 (s, C-5H), 7.14 (m, C-3H), 7.51

(m, C-2H). 13C-NMR Data (DMSO): d ¼ 26.54 (C-11), 31.56 (C-10), 64.21 (C-9),

66.36 (C-5), 115.54 (C-3), 129.58 (C-2), 132.56 (C-1), 157.82 (C-4), 168.98 (C-6). Mn

(GPC), 4,800 Da; PD 2.2.

Polyester (11): 1H-NMR Data (DIOXANE): d ¼ 1.17 (m, OCH2CH3 end group), 1.28

(m, C-12H), 1.30 (m, C-11H), 1.53 (m, C-10H), 4.14 (m, C-9H), 4.68 (s, C-5H), 7.16

(m, C-3H), 7.49 (m, C-2H). 13C-NMR Data (DMSO): d ¼ 26.18 (C-11), 28.98 (C-12),

29.66 (C-10), 64.29 (C-9), 66.30 (C-5), 115.79 (C-3), 129.63 (C-2), 132.86 (C-1),

157.46 (C-4), 169.77 (C-6). Mn (GPC), 5,100 Da; PD 2.7.

Figure 1. 1H-NMR spectrum for monomer 2 and polyester 7.
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Results and Discussion

The novozyme-435 catalyzed polymerization showed high regio- and chemo- selectivity.

Comparison of the 1H-NMR spectrum of monomer 2 and the polymer 7 showed

the exclusive transesterification reaction between the ethyl ester of monomer 1 and

the alcoholic hydroxyl group of monomer 2. The appearance of a new signal at d

¼ 4.29 ppm in the polymer 7 spectra and the disappearance of the signal at d ¼ 3.72 ppm

in the monomer 2 spectra confirmed the transesterification between the CH2OH of

monomer 2 and the ethyl ester group of monomer 1. The signal at d ¼ 4.60 ppm in the

polymer 7 was assigned to the methylene protons of the COCH2O moiety (C-5 protons

in Figure 1), the signal at d ¼ 4.29 ppm to the methylene protons of the COOCH2

moiety (C-9 protons in Figure 1), and signal at d ¼ 3.64 ppm to COOCH2CH2 moiety

(C-10 protons in Figure 1), and signal at d ¼ 3.54 ppm to OCH2CH2OCH2 moiety

(C-11 protons in Figure 1).

The transesterification reaction between the diethyl ester group of monomer 1 and the

CH2OH group of monomer 2 was also confirmed by the 13C-NMR spectrum of the product

polyester 7. A new peak appeared at d ¼ 69.44 and the peak at d ¼ 73.08 disappeared, and

this confirmed the transesterification reaction (Figure 2). All the other polyesters 8–11

were also characterized as described above for polymer 7.

Thermal properties of the polyester 7–11 were studied using a TA Instruments DSC

2910. Indium and aluminum was used for calibration of the temperature and heat of fusion

Figure 2. 13C-NMR spectrum for monomer 2 and polyester 7.
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of the DSC unit, and liquid nitrogen was used as coolant. The mass of liquid crystal

samples used were between 3 and 8 mg. Prior to DSC runs, each samples was heated to

ca. 108C above its melting point and held at that temperature for few minutes to ensure

it complete to the isotropic phase. Consecutive cooling and heating curves were

recorded at a rate of 108C/min between this temperature and 2308C. Figure 3 shows

the DSC experiment result of polyester 7 and 10. Table 1 shows the summary of the

thermal behavior of the polymer 7–11. From Table 1, the introduction of flexible

Table 1

Transition temperature by differential scanning

calorimetry for polymer 7–11

Polymer Cr! Sm(8C) Sm! Iso(8C)

7 70 89

8 77 108

9 101 121

10 98 119

11 104 143

Note: Cr, Sm, Iso represent crystalline, smectic and
isotropic phases, respectively.

Figure 3. Differential scanning calorimetry (DSC) thermogram of polymer 7 and polymer 10 with a

scan rate at 108C min21.
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segment into the polymer main chain decreases the transition temperature. Polymer 7 has

the lowest transition temperature because of the introduction of the most flexible segment,

triethylene glycol.

The DSC investigation suggests that polymer 7–11 show liquid-crystalline tran-

sitions. Thus, the phase transition of the polymers was studied using polarizing light

optical micrograph (POM). For the preparation of samples, the respective polymer was

heated up to isotropic state, after that, the sample was cooled down slowly to liquid crys-

talline temperature and annealed at that temperature for 1 h. Upon cooling from the

isotropic liquid, a birefringent phase forms, and ultimately develops a fanlike texture.

Figures 4 and 5 show the fanlike texture, a typical smectic texture. The fan’s structure

is small in all cases, as can be expected from polymers having a high molecular weight

and melt viscosity.

Figure 4. Polarizing optical micrograph (POM) of mesophasic texture for polymer 10 at 1108C after

1 h of annealing. magnification 400�.

Figure 5. Polarizing optical micrographs (POM) of mesophasic texture for polymer 7 at 808C after

1 h of annealing. magnification 100�.
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Conclusions

Main chain liquid-crystalline polyesters containing rigid biphenyl mesogens and flexible

spacers have been synthesized using chemo-enzymatic route. The enzyme catalyzed

polymerization showed high region- and chemo- selectivity. The optical texture

revealed by POM shows that the liquid-crystalline polymers have smectic phase.
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